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ABSTRACT

A previously developed local-global stiffness matrix methodology for the response of a composite
half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid par-
abolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g.,
honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement
field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier

transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of
layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered
half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary

condition on the top surface of the half plane indented by a rigid punch results in an integral equation for
the unknown pressure in the contact region. The integral possesses a divergent kernel which is decom-
posed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and

a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the
resulting singular integral equation is obtained using a collocation technique based on the properties of
orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the
important influence of low transverse properties of layers with complex eigenvalues, such as those exhi-
bited by honeycomb, on the load versus contact length response and contact pressure distributions for half
planes containing typical composite materials.

INTRODUCTION

In this paper we investigate the response of an arbitrarily laminated composite half plane, contain-

ing layers whose displacement field is characterized by complex eigenvalues, indented by a well-

lubricated rigid punch of a parabolic profile. A solution to this class of problems has been provided previ-

ously for half planes consisting of isotropic, transversely isotropic, orthotropic or monoclinic layers

characterized by real eigenvalues using a generalized plane deformation formulation, Fourier transforms

and the local-global stiffness matrix approach (Pindera, 1991; Pindera and Lane, 1993; Binienda and Pin-

dera, 1994). Displacement fields characterized by real eigenvalues occur in the majority of advanced

continuously-reinforced composite materials in use today (Pagano, 1970). However, in the case of honey-

comb layers oriented in the manner shown in Fig. 1, the solution of the Navier's equations under the con-

straint of generalized plane deformation in the x-z plane is characterized by complex eigenvalues. The



complexeigenvaluesariseduetodramaticdifferencesin thehoneycomb'selasticmoduliaswill bedis-
cussedlater.Herein,wepresentthesolutionto a classof compositescharacterizedby complexeigen-
valuesandsubsequentlyincorporateit intothelocal-globalstiffnessmatrixformulationof contactprob-
lemsinvolvingarbitrarilylayeredhalf planes.Numericalexamplesareprovidedthatillustratetheeffect
of low transversepropertiesof layerswithcomplexeigenvalues,suchasthoseexhibitedbyhoneycomb,
onthecontactloadversuscontactlengthresponseandcontactpresuredistributionsfor certainhalfplane
configurationscontainingtypicalcompositematerials.Exact,analyticalsolutionsto contactproblems
involving such sandwichconfigurations,which do not appearto be presentlyavailable,have
technologically-significantapplicationsin theaircraft,automotiveandmarineindustry.We notethat
complexeigenvaluesolutionsalsoappearin theanalysisof piezoelectriclaminates,asshownbyHeyliger
(1994)andHeyligerandBrooks(1995)usingtheFourierseriesrepresentationof thedisplacementfields.

Asafirst step,weconstructa localstiffnessmatrixin theFouriertransformdomainfor layerswith
displacementfieldscharacterizedbycomplexeigenvaluesbyrelatingthedisplacementcomponentsatthe
layer'stopandbottomsurfacesto thecorrespondingtractioncomponents.Thelocalstiffnessmatrixfor
thecorrespondinghalf planesis recoveredasaspecialcase.Assemblyof thelocalstiffnessmatricesof
theindividuallayerscomprisingthearbitrarilylaminatedhalfplaneintotheglobalstiffnessmatrixin a
particularfashionensuressatisfactionof displacementandtractioncontinuityat thecommoninterfaces
andtheexternalboundaryconditions.Applicationof themixedboundaryconditionon theslopeof the
surfacedisplacementin thecontactregionandtraction-freerequirementelsewhereontheboundarypro-
ducesanintegralequationfor thedeterminationof thecontactpressure.Asdescribedelsewhere(cf.,Pin-
deraandLane(1993)),the local/globalstiffnessmatrixapproachnaturally facilitates decomposition of

this integral equation into singular and regular parts that, in turn, can numerically be solved using the col-

location technique outlined by Erdogan (1969) and Erdogan and Gupta (1972). The decomposition of the

integral equation uses asymptotic properties of the local stiffness matrix and a relation between Fourier

and Hilbert transforms of the contact pressure.

ANALYSIS

We consider a configuration composed of a number of layers bonded to a half plane wherein each

region exhibits (transversely) isotropic, orthotropic, and/or monoclinic properties, Fig. 1. A monoclinic

ply is obtained by rotating a transversely isotropic, unidirectional ply through an angle 0 about its out-of-

plane axis. A local x-y-z coordinate system is placed in the center of each layer such that the x and y

axes lie in the lamination plane and the z axis is perpendicular to this plane. The layered medium is infin-

ite in the x-y plane and the loading is such that the problem is plane in the x-z coordinate system. For

the bottom half plane, the local coordinate system is placed at the bounding surface. The assemblage is

indented by a rigid, frictionless punch of a parabolic profile and we are interested in the applied load as a

function of the contact length and the resulting normal stress distribution in the contact region.



Due to the presenceof monoclinic(i.e.off-axis)plies,generalizeddeformationformulationis
employedwiththedisplacementcomponentstakenin theform,

u = u(x,z), v = v(x,z), w = w(x,z) (1)

Using the above displacement field, strain-displacement relations, and constitutive equations for a

transversely isotropic or orthotropic ply with fibers rotated about the z-axis, in the equilibrium equations,

the Navier's equations for a generic monoclinic ply become,

CllU,xx + C55u, zz + Cl6V,xx + C45v,zz + (CI3 + C55)W.xz = 0

Cl6U,xx + C45u,zz + C66v,xx + C44v,zz + (C36 + C45)W,xz = 0 (2)

(CI3 + C55)U,xz + (C36 + C45)V,xz + C55w,xx + C33w,zz = 0

where the barred stiffness elements CO are related to the unbarred stiffness elements CO in the principal

material coordinate system by the familiar transformation equations. We note that coupling exists

between all the displacement components for a monoclinic layer. The above equations can be specialized

for an orthotropic or (transversely) isotropic layer by setting the stiffness elements Clt, C36 and C45 to

zero, and by replacing the remaining Cij's by C0's. In this case, the out-of-plane displacement component

v (x,z) becomes uncoupled from the in-plane displacement components u (x,z) and w (x,z).

The solution of the equilibrium equations for each layer must satisfy the external surface mixed

boundary conditions as well as the interfacial traction and displacement continuity conditions at each

interface. The external surface mixed boundary conditions ensure that the normal traction component tJz:

is zero outside the contact region Ixl > c, while inside the contact region the vertical displacement

w(x,z) conforms to the profile of the punch. The contact length 2c is assumed to be given and the resul-

tant load P is calculated by integrating the contact pressure distribution over 2c, provided that az.z remains

compressive in the contact region. The formulation is thus valid provided that no separation takes place

between the punch and the half plane during continuing loading (Urquhart and Pindera, 1994). These

mixed boundary conditions are given in the form,

Wl.x(x,+hl/2)=f(x) for Ixl <c and _Jz.z=0 for Ixl >c (3a)

_xz = _yz = 0 for --_ < x < +oo (3b)

while the interfacial traction and displacements continuity conditions are,

uk(x,-hk/2) = Uk+1(X, hk+l/'2) O_z(x,-hk/2) = O'/k? 1 (x, hk+l/2) i = x,y,z (4)

where Uk = (Wk, Uk, Vk), is the displacement vector for the kth ply.



Thesolutionto eqns (2) subject to the boundary and continuity conditions given by eqns (3) and (4)

is obtained using Fourier transforms defined, along with the inverse transform, by

4-00 4.00

-_k(s,z) = 1 1 . isx
_ uk(x,z)eiSXdx, uk(x,z) - _-- J -uk(s,z)e- ds-.- "42n .-.

(5)

where _k(s,z) is the displacement vector for the kth ply. Application of the Fourier transform reduces the

system of partial differential equations, eqns (2), to a system of ordinary differential equations in z with

the transform variable s appearing as a parameter. For a monoclinic layer these equations are,

C55u, zz - $2C11u + C45_ zz - s2C16 _ - is(C13+C55)w,z = 0

C45u, zz - s 2 C 16 _ + C44v, zz - s 2 C66 _ - is(C36+C45)w,z = 0

-is(C13+C55)ff, z - is(C36+C45)_z + C33w.zz - s2C55 _ = 0 (6)

As indicated previously, the corresponding equations for orthotropic or transversely isotropic layers are

obtained by setting Ci/= Cij, with Cl6 = t_36 = C45 = 0.

The solutions to the above equations are sought in the form _(s,z) = Wo(s)e sxz, _(s,z) = Uo(s)e sxz,

and F(s,z) = Vo(s)e sxz, where _. is determined from a characteristic equation whose form depends on the

layer's material symmetry as discussed below. If the thicknesses of the layers comprising the half plane

are finite, the exponential terms in the transform domain solutions are expressed in terms of hyperbolic

functions to facilitate construction of the local stiffness matrix for a given layer.

The eigenvalues X's for monoclinic, orthotropic and isotropic layers or half planes are obtained

from the following equations (upon substitution of the assumed displacement solutions into eqns (6)),

monoclinic :

orthotropic :

isotropic :

-A_. 6 + B_,4 -I- C_, 2 -I-D =0

(C44_, 2 - C66)(A_, 4 + B_, 2 + C) = 0

(_,2 _ 1)(_4 _ 2_2 + I)= 0 (7)

where the coefficients A through D for are lengthy algebraic expressions involving the elastic stiffness

elements Cij's for monoclinic layers and Cij's for orthotropic layers (cf. Pagano (1970)). The eigenvalues

for an isotropic layer are real (i.e., _,1,2 = +1, _L3. 4 = +1, _'5,6 = +1). In the case of most advanced unidirec-

tional composites modeled as either transversely isotropic or orthotropic, the eigenvalues _,'s are also real.

The same holds true for an orthotropic unidirectional composite laminae rotated through an off-axis angle

in its plane (i.e., the x-y plane in Fig. 1). Such a rotated laminae behaves like a monoclinic layer in the

fixed coordinate system x-y-z shown in Fig. 1. Solutions for isotropic, orthotropic and monoclinic lam-

inae with real eigenvalues, and subsequent construction of the local stiffness matrix, have been provided

by Pindera and Lane (1993). In the case of orthotropic materials with honeycomb-type microstructures,



however,theeigenvaluesaretypicallycomplex.Thesolutionforthisclassof materialsisprovidednext.

Solution for orthotropic materials with complex eigenvalues

The coefficients A, B, and C for an orthotropic material appearing in the second of eqn (7) are given

in terms of the elastic stiffness constants Cij as follows,

A =C33C55 , B =C13(C13 +2C55)-Cl1C33, C=C11C55

The expressions for the eigenvalues of an orthotropic material are thus obtained in the following form:

C ll C33 - C13(Ci3 + 2C55) + 4[C1.C33 - C13(C13 4- 2C55)] 2 - 4C11 C33C25

_,2,2 = 2C33C55

Cll C33 - C13(C13 + 2C55) - 4[CiiC33 - C13(C 13 + 2C55)] 2 - 4C 1] C33 C_5

_,2,4 = 2C33C55

_'5,6 = 4-'_/C66/C44 (8)

Solutions with complex eigenvalues to eqn (6) are obtained when the expression under the square root

appearing in the first two sets of eigenvalues in eqn (8) becomes negative. This expression can be fac-

tored to determine the region in the elastic stiffness constant space where complex eigenvalues are found.

Setting this expression to zero,

(C13 + C'V_l C33 )(Cl3 - C_/-C_I_C33 )[Ct3 - (-2C55 + _ )][Ci3 - (-2C55 - _lt C33 )1 = 0

yields four planes in the "_t-CIlC33 -C 13-C55 space that separate the region with real and complex eigen-

values, Fig. 2. These planes are: C 13= +_, C 13 = -2C55 + _--II l C33.

Complex expressions for the eigenvalues in the solutions for the displacement components ff(s,z)

and V_(s,z) are obtained for honeycomb materials which are characterized by very large Young's modulus

associated with the z direction, E33, and small Young's moduli associated with the x and y directions, Ell

and E22, respectively. In this case the eigenvalues have the form,

where

_'1,2 = a +_ib , _'3,4 = --a + ib (9)

a=ffrcos(O), b=ffrsin(O), r=.X C_
_/ C33

0 = tan -l (
44CIIC33C25 -- [C11C33 -- CI3(C13 + 2C55)] 2

CliC33 - Cl3(Ci3 + 2C5s)
) (lO)



Thus the complex eigenvalue solutions to the Fourier-transformed Navier's equations for orthotro-

pic layers are conveniently expressed in terms of hyberbolic functions as follows,

ff(s,z) = [Fl(S)COS (sbz) + G l(s)sin (sbz)]sinh (saz) + [F2 (s)cos (sbz) + G2(s)sin (sbz)]cosh (saz)

_,(s,z) = i Ill (s)cos (sbz) + K 1(s)sin (sbz)]sinh (saz) + [Iz(s)cos (sbz) + K2 (s)sin (sbz)]cosh (saz)

_(s,z) = F3(s)cosh (s_.sz) + G3(s)sinh (s_.5z) (1 1)

where the coefficients Ii(s) and Ki(s) are related to the coefficients Fi(s) and Gi(s ) (i = 1, 2) as follows,

ll(s) = foF2(s) + goGl(S) , 12(s) = foFl(S) + goG2(s)

Kl(s) =-goFl(s) +foG2(s), Kl(s) =-goF2(s) +foGl(s) (12)

where

a[( a2 +b2)C55 - CII] b[(a 2 +b2)C55 + Cil]

fo = (a 2 + b2)(Ci 3 + C55) go = (a 2 + b2)(CI 3 + C55) (13)

For orthotropic half planes, on the other hand, it is convenient to express the corresponding solu-

tions in terms of exponential functions as follows,

-ff(s,z) = [Fi(s)cos (Is Ibz) + F2(s)sin ( Is Ibz)]e is I,_z

w(s,z) = sgn(s)i [(f0F i (s) + goF2(s))cos ( Is Ibz) + (-goF l (s) + foF2(s))sin ( Is Ibz)]e Is laz

v(s,z) = F3(s)e is IX_z (14)

The displacements given by eqn (1 1) are substituted back into the constitutive equations in order to

determine interfacial tractions needed in applying the continuity conditions, eqn (4), in the transform

domain, and ultimately in the construction of the local stiffness matrix. For an orthotropic layer, the con-

tinuous interfacial stresses given in terms of displacements in the transform domain are,

_zz(S,Z) = -isC 13-ff(s,z) + C33_:,z(S,Z)

_xz(S,Z) = C55(-d. (s,z) - is_(s,z))

 yz(s,z) = c44 . (15)

Rather than determining the unknown Fourier coefficients Fj(s ) and Gj(s) in the solutions for the dis-

placement field in terms of the unknown contact pressure distribution through the application of the
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interfacialcontinuityconditionsandthemixedboundaryconditionat the top surface, the problem is

reformulated in terms of the unknown interfacial displacements using the local-global stiffness matrix

approach outlined in the sequel.

Local-Global Stiffness Matrix Formulation

The local-global global stiffness matrix approach naturally facilitates the reduction of the contact

problem to a singular integral equation in the unknown pressure distribution in the contact region. This

singular integral equation is then solved using the technique developed by Erdogan (1969) and Erdogan

and Gupta (1972). First, a local stiffness matrix is developed for the kth layer that relates the traction

components on top and bottom surfaces of the layer to the corresponding displacement components. This

is accomplished by expressing the Fourier coefficients Fj(s) and Gj(s) in terms of interfacial displace-

ments obtained from eqns (I 1), and subsequently using these expressions in the interfacial tractions

obtained from eqns (14). For orthotropic layers with complex eigenvalues, the resulting local stiffness

matrix equation has the following form,

kll kl2 0 kt4 kl5

kl2 k22 0 k24 k2s

0 0 k33 0 0

kl4 k24 0 kll -k12

kl5 k25 0 -kl2 k22

0 0 k36 0 0

0 _+/i

_+

0 u

_+

k36 v

0 _-/i

0 -if-

k33 _-

Ozz/i s
__+

Oxz/s

_ y+z/s

-_ zz/i_

-_ yz/S
• o

(16)

where the "+" and "-" superscripts refer to the top and bottom surfaces of a given

above equation is expressed symbolically in the form,

ply, respectively. The

(17)

The elements k0 of the local stiffness matrix are functions of the transform variable s, material stiff-

ness constants CO, and layer's geometry. These are provided in the Appendix. The elements kij for

monoclinic, orthotropic, and transversely isotropic layers characterized by real eigenvalues have been

provided previously by Pindera (1991) and Pindera and Lane (1993).

Next, imposition of continuity of displacements and tractions along the common interfaces together

with the external boundary conditions (eqns (3)-(4)) gives rise to a system of equations in the unknown

interfacial displacement components represented in the matrix form below. It is observed that the assem-

bly of the global stiffness matrix for the entire layered medium is carried out by superposing local



stiffnessmatricesof theindividuallayersalongthemaindiagonalof theglobalmatrixin anoverlapping
fashion.

KI, Kb o
+K, xh

o +Kh .
0 0 K31

0

"m " " "

U2 0

• 0

o

(18)

*nIn the above, K11 is the stiffness matrix of the bottom half plane•

Inverting the global stiffness matrix yields a relation between the top surface displacements and the

top surface tractions,

where H]l is the first 3 x 3 submatrix of the inverse of the global stiffness matrix in eqn (18). Defining

the elements of the matrix HI I by Hij, the transform of the normal displacement on the surface of the half

plane can be expressed in terms of the normal contact stress _zz in the absence of friction (i.e.

(YXZ = (Yyz = 0),

__ I
Wl =Hll(S)_zz(S)/S with

arc

_l(s)=_(s)=----_ Sp(x')ei'_X'dx'

Imposing the top surface mixed boundary condition on the slope of the normal displacement, w I.x =f(x)

in the interval -c < x < c, an integral equation for the unknown contact stress distribution p(x) is then

obtained in the form,

-i ** e-iSx ds = -i i
w,. x - ___ :**sw, _--__ Hll(s)p(s)e-iSX ds

(20)

The above is a singular integral equation because as s approaches + ** the kernel H ll(s) does not vanish,

making the integral unbounded. To find the unknown function p(x), the dominant or singular part of the

kernel must be identified. This is accomplished by first examining the asymptotic behavior of the local

stiffness matrix as the transform variable s approaches positive or negative infinity. In this case, the cou-

pling submatrices K]2 and K_l in eqn (17) vanish and the stiffness matrix assumes the following form,

8



(21)

*kThe elements of the asymptotic stiffness matrices K_] and K22 are functions of the material properties of

the given layer but not functions of the transform variable s or geometry (Pindera (1991)).

The asymptotic behavior of the local stiffness matrix given by eqn (21) ensures that in the limit as s

approaches + o0, the resulting global stiffness matrix has only diagonal elements, so that there is no cou-

pling between top and bottom surfaces of each lamina of the layered half plane for this limiting case.

Consequently, the limiting behavior of eqn (19) becomes

These results are used to separate the divergent integral in eqn (20) into one integral containing a

Cauchy kernel and another integral with a regular kernel. Defining sgn(s)H_I = lim Hll(s) to be the
s---_:_o

first element of the inverse of the asymptotic stiffness matrix in eqn (22) (or eqn (19)), where H ll (s) is

the first element of the inverse of the global stiffness matrix in eqn (18), the mixed boundary condition

given by eqn (20) becomes,

-i S . i .w 1.x = _-__ sgn(s) H11 p(s) e -isx ds - _ _ ( H iz (s) - sgn(s) Hl l )_(s) e -isx ds
--oo

(23)

In view of eqn (22), a relationship between the Fourier and finite Hilbert transforms of the contact pres-

sure can be derived in the following form (cf. Gladwell (1980, p.210),

l+i2_ __-i sgn(s)_(s) e -isx ds = _ Pt-x(t-----_)dt (24)

reducing the dominant term of the singular integral to an integral containing a Cauchy kernel. Using odd-

even properties of the regular kernel, the following form of the singular integral equation for the contact

stress distribution is then obtained,

x Hl l p (t____)dt + H°l (s) p(t) sin(t-x)s dt ds (25)
W l,x - R - rc -c t-x _ O-c

where R is the punch radius and HOt (s) = H ll (s) - sgn(s)H_l is the regular kernel.



NUMERICAL RESULTS

Thesolutionto eqn(25)hasbeenobtainedusingthenumericaltechniqueforsingularintegralequa-
tionsdevelopedby ErdoganandGupta(1969,1972)whichis basedon orthogonalpropertiesof Che-
byshevpolynomialsinaGaussianintegrationapproach.Thedetailsof theapplicationof thetechniqueto
theoutlinedcontactproblemhavebeenprovidedbyPinderaandLane(1993).

Here,we illustratethedevelopedsolutionby investigatingtheeffectof stackingsequenceand
materialpropertiesonthecontactloadasafunctionofcontactlength,andnormalizedcontactstresspro-
file, forlayeredhalfplanesconstructedwithcommonlyusedmetalmatrixandpolymericmatrixunidirec-
tionalcomposites,andhoneycomb-likelayers.Theunidirectionalcompositesemployedin theanalysis
includethreetypesof polymericmatrixcomposites,namelyglass/epoxy(G1/Ep)and two typesof
graphite/epoxy(Gr/Ep)(T300/934orGr/Ep-1,andP75/934or Gr/Ep-2),andtwotypesof metalmatrix
composites,namelyboron/aluminum(B/AI)andP100/6061graphite/aluminum(Gr/AI).Thesecompo-
sitesprovidea widerangeof materialpropertieswithdifferentorthotropyratios.Theelasticconstantsof
thesematerialsaregiveninTable1.Thehoneycombpropertiesincludedin thetablearebasedonthedata
reportedby Shuart(1978)for analuminumhoneycombwhosemacroscopicelasticpropertiesweregen-
eratedusinga finite-elementhomogenizationanalysis.Forthepurposeof thepresentillustration,these
properties(exceptthePoisson'sratios)weremultipliedbyafactorof sevenin orderto avoidexcessively
highdeformationsin thecontactregioncausedbythelowvalueof theYoung'smodulusin thedirection
of theappliedload,whichmayhaveinvalidatedthepresentanalysisbasedon linearelasticity.Wepoint
out thattheYoung'smodulusin thedirectionof theappliedloadof thestifferhoneycombisnowof the
sameorderof magnitudeasthatof glass/epoxy,graphite/epoxyandgraphite/aluminum,andanorderof
magnitudesmallerthanthatof boron/aluminum.Wealsonotethat,inpractice,honeycombpropertiescan
becontrolledbythechoiceof material,wall thicknessandcell dimensions.Figure3 showsthelocations
of threeof thesix compositematerialsandthehoneycombin the Nff'Ci1C33-C13-C55 space, with the

planes that define the region with complex eigenvalues included.

For the layered half planes, the following configurations were studied: a honeycomb layer bonded

to a composite half plane; a composite layer bonded to a honeycomb half plane; and a composite layer

bonded to a honeycomb layer which, in turn, was bonded to a composite half plane. We note that

although the configuration with the honeycomb layer on top is neither practical nor technologically

important, nevertheless the results can be used for comparison with more technologically meaningful

configurations as well as correlation with past results. The composite layers in all the investigated confi-

gurations had fibers oriented along the x-axis (see Fig. 1). Thus their response in the x-z plane was that of

an orthotropic material characterized by real roots in the displacement field solutions. The thickness of

the surface and interior plies comprising the layered half planes was 1.27 and 2.54 mm, respectively. The

punch radius employed in the calculations was 25.4 mm.

As a first step, and to provide a point of reference, we compare the load versus contact length

responses of homogeneous half planes constructed with the aforementioned materials, Fig. 4. As dis-

cussed previously by Binienda and Pindera (1994), the response of the homogeneous composite half
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planeswithfibersorientedalongthex-axis is primarily influenced by the Young's modulus in the direc-

tion of the applied load, E33 , with the longitudinal modulus Ell playing a less significant role. Thus the

contact load versus contact length response is stiffest for the composite with the largest E33 , and

decreases with decreasing E33. This trend, however, does not hold for the honeycomb half plane which

exhibits the most compliant response despite its larger E33 relative to that of the two Gr/Ep half planes.

Evidently, the properties transverse to the load direction play a substantial role in this case. To

emphasize this point, we have included in Fig. 4 the response of a fictitious isotropic material, which will

be referred to as "isotropic honeycomb", with the Young's modulus equal to the honeycomb's modulus in

the direction of the applied load, E33, and a Poisson's ratio of 0.30. Considerable stiffening of the load

versus contact length response is observed by increasing the Young's moduli transverse to the load direc-

tion to equal that in the direction of the applied load.

Next, we compare the response of the configuration comprised of the honeycomb layer bonded to a

composite half plane, Fig. 5, to that of the configuration comprised of a composite layer bonded to the

honeycomb half plane, Fig. 6. In the first instance, the initial load versus contact length response, Fig. 5a,

follows closely the response of the honeycomb half plane irrespective of the properties of the supporting

half plane. Thus, as is well known, the initial response is governed by the properties of the top layer.

Beyond the contact half length of approximately 1 mm, the influence of the supporting half plane is

becoming apparent, with the trends following those seen in Fig. 4. The normalized pressure distributions

for these configurations at the contact half length of 2.54 mm, i.e., c/h I = 2 (where h I is the thickness of

the top layer, see Fig. 1), given in Fig. 5b, exhibit departures from elliptical profiles that increase with

increasing Young's modulus in the direction of the applied load. These departures are characterized by a

higher maximum pressure in the center of the contact region (i.e., x/c = 0.0) relative to that of an elliptical

profile. When the stacking sequence is reversed in the second instance, Fig. 6, the influence of the com-

posite surface layer's properties is immediately evident in the load versus contact length response, Fig.

6a. The configuration with the stiffest surface layer and lowest Eli/E33 ratio, i.e., B/Al-honeycomb half

plane, exhibits load versus contact length response that initially departs substantially from parabolic, indi-

cating the presence of localized bending of the surface layer. This is also evident in the contact pressure

distribution, Fig. 6b, which is pronouncedly nonelliptical, characterized by maximum values occuring at

the edges of the contact region. The remaining configurations exhibit parabolic load versus contact length

responses and nearly elliptical contact pressure distributions. As in the previous case, the small departures

from elliptical profiles increase with increasing Young's modulus in the direction of the load and decreas-

ing ratios E l 1/E33. In this case however, the departures are characterized by a lower maximum pressure

at the center of the contact region relative to that of an elliptical profile. This, in turn, indicates decreasing

resistance to localized bending, with the B/Al-honeycomb half plane being the least resistant.

The substantial impact of the low transverse properties of the honeycomb substrate on the contact

responses shown in Fig. 6 is highlighted by comparison with the corresponding results, given in Fig. 7,

generated using the properties of the fictitious isotropic honeycomb introduced earlier. Comparison of

Figs. 6a and 7a demonstrates the considerable stiffening of the contact load versus contact length
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responsedueto theincreasein thetransversepropertiesof thehoneycombsubstrate.Theextentof the
stiffeningis mostevidentfor theB/AI configurationwhichnearlyregainsaparaboliccontactloadversus
contactlengthresponsedueto theincreasein thetransversepropertiesof thesubstrate.Comparisonof
Figs.6band7bdemonstratesthatthedeparturesfromellipticalcontactpressuredistributionsarereduced
atthegivencontactlength(c= 2.54mm)dueto thisincrease,whichis particularlyevidentfor theB/AL
configuration.

Thelast investigatedconfigurationis composedof a compositelayerbondedto thehoneycomb
layerwhich,in turn,isbondedto acompositehalf plane.Figures8aand8bpresenttheloadversuscon-
tactlengthresponseandthecontactpressuredistributionsat thecontacthalf lengthof 2.54mm,respec-
tively,for theseconfigurations.Theloadversuscontactlengthresponsesappearparabolic,andarestiffer
thanthecorrespondingresponsesobservedin theconfigurationscomposedof acompositelayerbonded
tothehoneycombhalfplane.Theinfluenceof thesupportinghalfplaneis thusverymuchinevidencein
theseconfigurations.Thecontactpressuredistributionsarenearlyellipticalfor mostconfigurationswith
theexceptionof theconfigurationwith theB/AI ply. In thiscase,thepressuredistributionis similarto,
butnotaspronouncedlynonellipticalas,thatseenin Fig.6b,suggestingthepresenceof somelocalized
bendingdespitetheparabolicloadversuscontactlengthresponse.Replacingthehoneycomblayerwith
thefictitiousisotropichoneycomblayer(notshown)doesnotvisiblystiffenthecontactloadversuscon-
tactlengthresponseanddecreasesthedeparturesfromellipticalcontactpressuredistributionsatthecon-
sideredcontactlengthonlyfor theB/AI configuration,incontrastwith theprecedingconfiguration.This
demonstratesthattheextentof theinfluenceof honeycomblayers'lowtransversepropertiesonthecon-
tactresponseof layeredhalfplanesalsodependsonthelayerdimensions.

CONCLUSIONS

The capability to analyze arbitrarily layered half planes with differently oriented composite plies,

indented by a frictionless, rigid parabolic punch, was extended to enable incorporation of layers or half

planes characterized by complex-eigenvalue displacement fields into the analysis. Honeycomb layers or

half planes with very low elastic properties perpendicular to the applied load fall into this category of

materials. Expresssions for the elements of the local stiffness for such materials were developed and

incorporated into the solution strategy for the contact problem of arbitrarily layered half planes based on

the local/global stiffness matrix approach in the Fourier-transform domain.

Unlike homogeneous half planes constructed with typical advanced unidirectional composites, the

load versus contact length response of honeycomb-like homogeneous half planes is significantly influ-

enced by the elastic constants associated with directions perpendicular to the applied load. The low values

of these constants relative to the Young's modulus in the direction of the applied load, E33, i.e., along the

axis of the honeycomb, substantially degrade the load versus contact length response relative to that of

homogeneous composite half planes with comparable Young's moduli E33 but higher Ell. When a

honeycomb-type layer is inserted directly underneath the top layer of a half plane laminated with typical

12



advancedunidirectionalcomposites,theability of thetop layerto resistlocalizedbendingunderthe
punchtendstobedegradedduetothehoneycomb'slowtransverseproperties.Thismayresultin nonpar-
aboliccontactloadversuscontactlengthresponsesandnonellipticpressuredistributionswithmaximum
magnitudesoccuringat theouteredgesfor surfacelayerswith sufficientlyhigh valuesof E33 and

E l 1/E33. Increasing the transverse Young's moduli of the honeycomb-like layer to equal the modulus in

the direction of the applied load was shown to substantially stiffen the load versus contact length

response, and decrease the departure of the pressure distributions from elliptical, thereby directly demon-

strating the importance of honeycomb layers' transverse properties.

The presented solution methodology can be employed in studying the contact response of laminated

plates containing layers with complex eigenvalues bonded to a stiff foundation whose response can be

approximated by a half plane. Symmetrically laminated finite-thickness plates loaded by opposing sur-

face contact loads, such as those exerted by aligned rollers, can also be investigated by modifying the

boundary conditions through the imposition of zero vertical displacement along the plane of plate's sym-

metry. Similary, finite-thickness laminated plates supported at the bottom surface by a system of forces

can be investigated by modifying the formulation to include the effect of the supports in the manner

described by Pindera and Lane (1993). In this case, the singular integral equation for the contact stress

distribution contains the unknown support reactions, requiring an iterative solution approach.

The contact pressure distribution is the first step in obtaining a solution to layered half planes and

plates indented by a punch. The knowledge of this distribution allows the calculation of internal stresses

to determine the regions where potential damage may occur due to the imposition of concentrated loads.
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APPENDIX - Elements of Local Stiffness Matrix

The elements of the local stiffness matrix for orthotropic layers whose generalized plane deformation solutions in

the Fourier transform domain are characterized by complex eigenvalues are given below.

1 Li L2

!,,, =-_c_el(-ST + _)

1 (-Cls + C33P3L3)

k12 = _-[ A2 AI

Ll L2

k14 = 2C33PI(---_-1 + _2 )

1 (-C13 + C33P3L3)

k,s = _-[ A2 AI

1 C P .Ll L2

k24 = 1[(C55(1 - L3 L4"_'7) - (C55(1 - -_-2 )]

1 p LI L2
k_, = _cs5 2(--_7+ -S7_

1

k33 = 2 C_N/-_6 (t3 + ct3)

1 C
k36 : 2-_ (1'3 - ct3)

(-Ci3 + C33P3L 4)
+ ]

(-C13 -t- C33P3L4) ]

where

Pl=goa+fo b, P2=goa-fo b, P3=fg +g_

, c 2 ocsLl=CtlS2+tlc 2 L2=ct I +tl s2 L3=b--- L4=b+--
' chsh '

acs

chsh

sc sc

AI = f0 c---_sh- go, A2 = -fo c--_-sh - g o

c = cos(sbh/2), s = sin(sbh/2), ch = cosh(sah/2), sh = sinh(sah/2),

ti = tan(srih/2), cti =l/t i
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The asymptotic expressions for the elements of the local stiffness matrix for orthotropic layers with complex eigen-

values as the transform variable s _ +oo, and for the corresponding half planes are given below.

-I- kll =+ C33(a + fob)
go

II

k12 -- -[CI3 + C33 b]
go

+ " fob)-- k22 = +C55(a -
go

_ k33 -I- ,_C-'44 C66

lit

where the notation + Kij denotes limiting behavior of kij as s goes to _+oo.
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Table 1. Material properties of polymeric and metal matrix unidirectional composites.

Material property G1/Ep Gr/Ep- 1 Gr/Ep-2 B/A1 Gr/AI Honeycomb

(T300/934) (P75/934)

El1 (GPa) 42.7 144.8 243.0 227.5 402.6 1.2 xl0 -2

E22 (GPa) 11.7 10.3 7.2 137.9 24.1 0.7 xl0 -z

E33 (GPa) 11.7 10.3 7.2 137.9 24.1 11.4

VI2 0.27 0.30 0.33 0.24 0.29 1.10

Vl3 0.27 0.30 0.33 0.24 0.29 0.35 ×10 -3

v23 0.55 0.50 0.49 0.40 0.45 0.21 ×10 -3

G12 (GPa) 8.24 5.51 3.93 55.15 16.75 1.52

GI3 (GPa) 8.24 5.51 3.93 55.15 16.75 4.66

G23 (GPa) 3.78 3.45 2.41 49.24 8.34 1.95

17



Z

Y

o

hl

h2

kth layer h

Honeycomb
Layer

Figure 1. Multilayered composite half plane with honeycomb layers by a

rigid, parabolic punch.

18



I C13 = V011C33

2O0 i00

C13 GPa

V(311c33 GPa 200

IOC

013 =-2C55 +

I 013 = - V'CllC33

-i00

-20O

C13 =-2C55 -

C55 GPa

Figure 2. Planes separating regions with real and complex eigenvalues of

eqn. (8) in the ._/c_,C33 - C_3 - Css space.

19



5O

3O
2O

C13 GPa

)
10 0

2O

G_k_.._....._GP_
P75/934

-2O

0

2

10

Honeycomb
GPa

Figure 3. Locations of the values of the stiffness elements Cij of several

common unidirectional composites and an aluminum honeycomb in the

- Cl3 - C5, space.

20



3OO

25O

200

+ B/AI

Gr/AI

+ GL/Ep

Gr/Ep-1

+ Gr/Ep-2

+ HC

---O--- IsoHC

Z

-o 150
O

...J

IO0

5O

0 I I

0 1 2 3

Contact half length (ram)

Figure 4. Contact response of homogeneous half planes.

21



250

2OO

100

5O

1

0.9

0.8

0.7

0.6

13.
"_ 0.5

0.4

0.3

0.2

0.1

0

0

HC, B/AI

HC, Gr/AI
HC, GI/Ep
HC, GdEp-1

HC, Gr/Ep-2

I I I

1 2 3 4

Contact half length (mm)

[ I I l I I I I I

HC, B/AI
HC, Gr/AI

----,it---- HC, GI/Ep
HC, Gr/Ep-1

l I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

_c

Figure 5. Contact response of an aluminum honeycomb layer bonded to a

composite half plane: a) load vs contact length; b) contact pressure
distribution for c=2.54 mm.

22



300 I i I i

25O

200

Z

v

-_ 150
o

.-.I

100

50

0

-O- Ba/AI, HC

--III - Gr/AI, HC

--_.-- G[/Ep, HC

--y-- Gr/Ep-1, HC

•... Gr/Ep-2, HC

0 1 2 3

Contact half length (mm)

5

1.0 I I I I I I I I I

13-
"o

13

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

B/AI, HC

--u - Gr/AI, HC

--A-- GI/Ep, HC

--T-- Gr/Ep-1, HC

•- O.-. GdEp-2, HC

w i i •

I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

xJc

Figure 6. Contact response of a composite layer bonded to an aluminum

honeycomb half plane: a) load vs contact length; b) contact pressure
distribution for c=2.54 mm.

23



25O

200

Z

150

O
.--I

100

50

B/AI, IsoHC
Gr/AI, IsoHC

GI/Ep, IsoHC
Gr/Ep-1, IsoHC
Gr/Ep-2, IsoHC

I I

2 3

Contact half length (ram)

4 5

I I I I I I I I I

(1.

"b

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 , i

0 0.1

I -_e.--- BIAI, IsoHC ]

Gr/AI, IsoHC [
GI/Ep, IsoHC
Gr/Ep-1, IsoHC [

GrlEp-2, IsoHC[

I I I I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

_c

Figure 7. Contact response of a composite layer bonded to an isotropic

half plane with the same Young's modulus as the honeycomb's modulus in

the direction of the applied load: a) load vs contact length; b) contact

pressure distribution for c=2.54 mm.

24



250

20O

Z
v.

"o 150
o

_J

100

5O

/

/
/

_
._

0

I I

2 3

Contact half length (mm)

4 5

1.0 I I I I I I I I I

0.9

0.8

0.7

0.6

"_ 0.5

0.4

0.3

0.2

0.1

0.0
0.0

+ B/A], HC. B/AI

_-- Gr/A,, HC, Gr/A,GI,'Ep, HC, GI/Ep

--T-- GdEp-1, HC, Gr/Ep-1

-..41.-- Gr/Ep-2, HC. GdEp-2

'_:"'_t._\ -

I I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

_C

Figure 8. Contact response of composite and aluminum honeycomb layers

bonded to a composite half plane: a) load vs contact length; b) contact

pressure distribution for c=2.54 mm.

25



REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reportingburdenfor this collectionel information is estimated to average 1 hourper response, including the time for reviewinginstructions,searchingexistingdata sources,
gatheringand maintainingthe data needed, and completingand reviewingthe collectionof information. Send commentsregardingthis burdenestimate or any other aspect of this
collection of information,includingsuggestionslot reducingthis burden, to WashingtonHeadquartersServices, Directoratefor InformationOperations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-430Q, and to the Office of Managementand Budget,PaperworkReductionProject(0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Final Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Frictionless Contact of Multilayered Composite Half Planes Containing Layers

With Complex Eigenvalues

6. AUTHOR(S)

Wang Zhang, Wieslaw K. Binienda, and Marek-Jerzy Pindera

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Akron

Civil Engineering Department

Akron, Ohio 44325

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

WU-523-21-13--00

NAG3-1827

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-11008

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR--97-206309

11. SUPPLEMENTARY NOTES

Project Manager, Steven M. Arnold, Structures and Acoustics Division, NASA Lewis Research Center, organization

code 5920, (216) 433-3334.

12L DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 24 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621--0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily

layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to

accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a general-

ized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex

eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently con-
structed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire

multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary

condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown

pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and
regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite

Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a

collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are

presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as

those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half

planes containing typical composite materials.

14. SUBJECT TERMS

Honeycomb composite; Contact problem; Frictionless; Indentation; Local/global stiffness;

Singular integrals

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSlRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

31
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSi Std. Z39-18
298-102


